In an RL-based control system, the turbine (or wind farm) controller is realized as an agent that observes the state of the ...
PID loops are a central component of modulating boiler control systems with applications ranging from basic steam header pressure control to cascading 3-element drum level control. A modern ...
Proportional-Integral-Derivative (PID) controllers represent a cornerstone in the field of control systems engineering, providing a versatile and robust method for regulating industrial processes. The ...
Self-regulating systems with feedback loops, i.e., the routing back of the output of a system to its input, have existed since antiquity and have since become an integral part of modern technology.
Machines and processes are controlled using many strategies, from simple ladder logic to custom algorithms for specialized process control, but proportional-integral-derivative (PID) is the most ...
The tuning of proportional-integral-derivative (PID) control loops was an important change at HollyFrontier’s Navajo Refinery in Artesia, N.M. Its hands-on, “mandraulic” culture was no longer cutting ...
In the nearly 40 years since electronic control systems first became common features of industrial machines, controls theory has necessarily evolved to keep pace with machine design. Early on, systems ...
At the core of any modern industrial process is a control system guaranteeing precision, stability, and efficiency. Perhaps the most commonly used are PID (Proportional-Integral-Derivative) ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results